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We describe a numerical method for modeling temperature-dependent fluid flow coupled
to heat transfer in solids. This approach to conjugate heat transfer can be used to compute
transient and steady state solutions to a wide range of fluid–solid systems in complex two-
and three-dimensional geometry. Fluids are modeled with the temperature-dependent
incompressible Navier–Stokes equations using the Boussinesq approximation. Solids with
heat transfer are modeled with the heat equation. Appropriate interface equations are
applied to couple the solutions across different domains. The computational region is
divided into a number of sub-domains corresponding to fluid domains and solid domains.
There may be multiple fluid domains and multiple solid domains. Each fluid or solid sub-
domain is discretized with an overlapping grid. The entire region is associated with a com-
posite grid which is the union of the overlapping grids for the sub-domains. A different
physics solver (fluid solver or solid solver) is associated with each sub-domain. A higher-
level multi-domain solver manages the entire solution process.

We propose and analyze some centered discrete approximations to the interface equa-
tions that have some desirable stability properties. The coupled interface equations may
be solved directly when using explicit time-stepping methods in the sub-domains, result-
ing in a strongly coupled approach. The stability of the interface treatment in this case is
independent of the relative sizes of the material properties in the two domains with the
time-step only depending on the usual von Neumann conditions for each sub-domain.
For implicit time-stepping methods we solve the interface equations in a weakly coupled
fashion to avoid forming a coupled implicit system across all sub-domains. The conver-
gence of this approach does depend on the relative sizes of the thermal conductivities
and diffusivities. We analyze different iteration strategies for solving these implicit equa-
tions including the use of mixed (Robin) approximations at the interface.

Numerical results are presented to illustrate the method. The accuracy of the technique
is verified using the method of analytic solutions and by computing the solution to some
heat exchanger problems where the exact solution is known. The technique is also applied
to the modeling of an inertial-confinement-fusion hohlraum target and the flow of coolant
past an hexagonal array of heated fuel rods. The multi-domain solver runs in parallel on
distributed memory computers and some parallel results are provided.
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1. Introduction

There are many interesting scientific and engineering problems that involve the coupling of fluid flow to heat transfer in
solids. These include modeling of heat exchangers, cooling of turbine blades in jet engines, nuclear reactors and cooling of
computer components to name a few. This manuscript outlines a first step towards the development of a framework and
numerical approximations for simulation of some of these important applications. We describe a flexible approach for mod-
eling heat transfer in fluid–solid systems based on the use of composite overlapping grids. The approach uses different phys-
ics solvers in the different fluid and solid domains. The solutions are coupled at the fluid–solid interfaces using the
continuity of temperature and heat flux. There can be any number of different fluid or solid domains and any number of
different physics solvers. The fluids are modeled using the incompressible Navier–Stokes equations with the Boussinesq
approximation. The solids are modeled with the heat equation. Each fluid or solid domain is discretized with an overlapping
grid. Curvilinear boundary fitted grids are used at boundaries and interfaces. The entire domain is represented with a com-
posite grid that holds the union of the sub-domain overlapping grids. The primary goals of the work presented here are to
develop the multi-domain numerical method and computational framework, to use mathematical and numerical analysis to
understand properties of the coupled approach, and to verify the accuracy of the technique. Simulation of many realistic
problems will require extensions of the present work, such as the addition of appropriate turbulence models, but this is left
to future work.

The multi-domain solution of all fluid and solid domains is advanced in time in a domain-split, weakly coupled, manner.
During each composite time-step, the solution in each sub-domain is advanced with an explicit or implicit predictor–correc-
tor time-stepping algorithm using the physics solver for that domain. The interface equations are updated after the predictor
and corrector steps. When explicit time-stepping is used, the interface equations are solved as a separate set of coupled
equations, resulting in an effectively strongly coupled algorithm. We propose a non-standard centered interface approxima-
tion. An analysis shows that with the centered interface approximation, the stability of the scheme is independent of the
relative sizes of thermal conductivities and thermal diffusivities in the adjacent domains. The time-step for the overall
scheme is no worse than the time-step determined for the individual sub-domains. This is in contrast to the more commonly
used approach [1]. When implicit time-stepping algorithms are used in the sub-domains, the interface equations are solved
in a segregated fashion using a Dirichlet condition on one side and a Neumann condition on the opposite side of the interface.
In this case it may be necessary to iterate and use additional corrector steps in order to satisfy the coupled interface condi-
tions to the desired tolerance. We describe and analyze an iteration strategy for solving these coupled implicit systems. The
iteration converges rapidly when a certain ratio involving the thermal conductivities and diffusivities of adjacent domains is
small (or large). The convergence of the iteration can be accelerated using a relaxation parameter. We also analyze the use of
a mixed (Robin) interface condition instead of the standard Dirichlet–Neumann approach and show that it has attractive
convergence properties especially for the situation when the Dirichlet–Neumann approach has difficulties.

Our multi-domain approach is based on the use of overlapping grids. This method, as discussed in Chesshire and Henshaw
[2], allows complex domains to be represented with smooth structured grids that can be aligned with the boundaries. Com-
pared to a multi-block grid, it is easier to construct an overlapping grid for a complex domain since the component grids are
not constrained to match exactly. The use of smooth grids is important for obtaining accurate answers especially when using
high-order accurate methods. Boundary fitted grids are important for accurate implementation of boundary conditions and
for representing boundary layer phenomena. The use of structured grids is important for performance and low memory use.
Moreover, since the majority of an overlapping grid often consists of Cartesian grid cells, the speed and low memory require-
ments inherent with Cartesian grids can be substantially retained. The overlapping grid technique is especially attractive for
handling problems with moving or deforming boundaries since the grids remain smooth and can be rapidly generated.
Although the usual interpolation used at overlapping grid interfaces is not conservative, conservative interpolation for over-
lapping grids can be constructed [3]. However, in our experience and in the work of many others, the simpler non-conser-
vative interpolation has worked well, even for very difficult problems involving strong shocks and detonations [4,5].

Overlapping grids have been used to solve a wide class of problems efficiently and accurately. The first use of overlapping
grids (called composite grids at the time) appeared in papers by Volkov [6,7], who considered approximations to Poisson’s
equation in regions with corners. Other pioneering work includes that of Starius [8–10], Kreiss [11] and Steger et al. [12]
who referred to the approach as Chimera grids. Since this early work, the overlapping grid technique has been used success-
fully to solve a wide variety of problems in high-speed reactive flow [4,5,13,14], reactive and non-reactive multi-material
flow [15,16], combustion [17], aerodynamics [18–24], blood flow [25], electromagnetics [26], flows around ships [27], vis-
co-elastic flows [28] and flows with deforming boundaries [29–31], among others. We also note that a hybrid scheme using
overlapping grids in fluid regions and unstructured grids in solid regions has been applied to some conjugate heat transfer
problems [32]. However, to our knowledge, the present work is the first application of composite grids to conjugate heat
transfer problems where both fluids and solids are solved using overlapping grids.

There are a variety of strategies that have been used to solve conjugate heat transfer problems. Finite difference, finite-
volume, finite-element, boundary-element and spectral-element approximations have all been applied [33–39]. The differ-
ent multi-domain strategies are distinguished by the degree to which domains are coupled. In the strongly coupled ap-
proach, a single large monolithic system is defined for the entire composite domain. This approach is often the most
robust. A common technique for conjugate heat transfer problems is to solve the fluid equations for the velocities and tem-
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perature in the entire domain, but force the velocities to be zero or small in the solid regions [33,34]. In the weakly coupled
approach, separate solution algorithms are used in different domains with solutions coupled at the interface [40]. This ap-
proach has some practical advantages in terms of re-use of existing physics codes without the need to develop a new mono-
lithic approximation. There are yet other approaches that lie somewhere between the strongly coupled and weakly coupled.
Some practitioners, for example, solve for a single temperature equation across all domains while having separate fluid solv-
ers in different domains [35,36].

The stability of the segregated interface approach for coupled heat equations has been studied by Giles [1]. He analyzed a
particular discretization and showed that for stability reasons the fluid domain should generally be given the Dirichlet con-
dition for continuity of the temperature and the solid domain the Neumann condition for continuity of the heat flux. Giles
also showed that the time-step restriction of the coupled problem was sometimes smaller than those from the sub-domains
and depended on the relative sizes of the heat capacities and grid spacings in the sub-domains. Roe et al. [40] considered a
different discrete approximation to the interface equations that improved the stability characteristics. There has also been
much work on solution strategies for domain-decomposition problems and many of these ideas are applicable to conjugate
heat transfer problems, see for example [41–43].

An outline of the paper now follows. In Section 2, we define the problem to be solved in terms of the partial differential
equations (PDEs), boundary conditions and interface conditions. In Section 3, we give a brief description of our discretization
approach and describe the coupled interface (CI) and segregated interface (SI) approaches. Our approach for multi-domain
time-stepping is presented in Section 4. Section 5 provides a stability analysis of the coupled interface approximation for a
model problem. In Section 6, we analyze the SI technique using Dirichlet–Neumann interface conditions and derive the con-
vergence characteristics of the iteration. We also analyze a mixed interface approximation and present computed conver-
gence rates for various cases. In Section 7, we present numerical results that show the accuracy of the method and its
use applied to some interesting applications. Some parallel scaling results are also provided. Conclusions are given in the
final section.

The computations in this paper were performed with the composite grid multi-physics solver cgmp together with the
incompressible Navier–Stokes solver cgins and the advection–diffusion (and heat equation) solver cgad. These programs
are part of the CG suite of PDE solvers and are built upon the Overture framework. These programs are all freely available
at http://www.llnl.gov/casc/Overture.
Fig. 1. Top left : a domain X with two fluid sub-domains X1, X2 and three solid sub-domains X3, X4 and X5. Top right: the composite G consists of five
overlapping grids, one for each domain. Bottom left: a computed conjugate heat transfer solution showing the temperature. Bottom right: the streamlines in
the fluid domains and the temperature in the solid domains.

http://www.llnl.gov/casc/Overture
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2. Problem specification and model equations

We are interested in solving a conjugate heat transfer problem in a domain X which consists of a set of N d sub-domains
that represent fluid and solid regions (see Fig. 1),
X ¼ [N d
d¼1Xd: ð1Þ
The sub-domains are assumed to be non-overlapping. A single sub-domain, however, may be multiply connected. A collec-
tion of non-overlapping regions may be represented, for example, with a single sub-domain (as X3 in Fig. 1). We define the
sub-domains in this way since we associate a separate physics solver with each sub-domain. A single heat equation solver,
for example, could be used on a multiply connected domain. This is described further in Section 3.

The solution in a fluid domain, Xf , with boundary @Xf , is governed by the incompressible Navier–Stokes (INS) equations.
The effects of temperature and buoyancy are modeled with the Boussinesq approximation. The equations are given by
ut þ ðu � rÞuþrp� mDuþ agðT � TrefÞ � f ¼ 0; t > 0; x 2 Xf ;

Dpþru : ruþ aðg � rÞT �r � f ¼ 0; t > 0; x 2 Xf ;

Tt þ ðu � rÞT �
1
qC
r � ðKrTÞ � fT ¼ 0; t > 0; x 2 Xf

8>>><>>>: ð2Þ
with initial conditions and boundary conditions,
uðx;0Þ; Tðx;0Þð Þ ¼ uIðxÞ; TIðxÞð Þ; t ¼ 0; x 2 Xf ;

BFðu; TÞ ¼ 0; t > 0; x 2 @Xf :

(
ð3Þ
Here u ¼ uðx; tÞ is the velocity, p the kinematic pressure, T the temperature, m ¼ l=q the kinematic viscosity, K the thermal
conductivity, q the density, C the specific heat, a the coefficient of thermal expansion and Tref is the reference temperature
for which there are no buoyancy forces. f and fT are forcing functions. We use a pressure–velocity formulation for these equa-
tions, solved with a split-step method. A second-order accurate and fourth-order accurate scheme are available, see [44–46]
for more details. Boundary conditions for these equations are discussed in Section 3.1. We have also developed efficient mul-
tigrid algorithms for overlapping grids [47] that can be used with the incompressible flow solver, although the multigrid sol-
ver is not used in the present work.

Heat conduction in a solid domain Xs is modeled by the heat equation,
Tt �
1
qC
r � ðKrTÞ � f ¼ 0; t > 0; x 2 Xs;

Tðx; 0Þ ¼ TIðxÞ; t ¼ 0; x 2 Xs;

BSðTÞ ¼ 0; t > 0; x 2 @Xs:

8>>><>>>: ð4Þ
At the interface I ¼ @Xf \ @Xs between a fluid region and a solid region the matching conditions are the continuity of the
temperature and the continuity of the normal component of the heat flux
½T�I ¼ 0; ð5Þ
½Kn � rT�I ¼ 0: ð6Þ
Here n is the normal to the interface I and ½��I denotes the jump across the interface. The interface conditions (5) and (6) also
apply at the interface between two fluid regions or between two solid regions. Higher-order accurate methods may require
higher-order matching conditions. These are derived by taking time derivatives of basic jump conditions (5) and (6) and
using the governing equation to replace time derivatives with space derivatives. Assuming for simplicity that the coefficients
K; q and C are constant within a sub-domain, the high-order jump conditions are
ðDDÞqT þ
Xq�1

j¼0

ðDDÞq�1�j
@j

t f

" #
I

¼ 0; q ¼ 0;1;2; . . . ; ð7Þ

KðDDÞqn � rT þK
Xq�1�k

j¼0

ðDDÞq�1
@j

tn � rf

" #
I

¼ 0; q ¼ 0;1;2; . . . ; ð8Þ
where the thermal diffusivity D is defined as
D ¼ K=ðqCÞ: ð9Þ
In this paper we only present results for second-order accurate approximations although we will use condition (7) with q ¼ 1
for the coupled interface approach described in Section 3.2.

3. Solution approach and discretization

We solve the multi-domain problem using a weakly coupled approach (although when explicit time-stepping is used the
approach is effectively strongly coupled). We associate a separate physics solver with each fluid or solid sub-domain of the
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multi-domain problem. We use the composite grid incompressible Navier–Stokes code cgins in a fluid domain and the advec-
tion–diffusion code cgad in a solid domain. There may be multiple instances of cgins and cgad. The composite grid multi-
physics solver cgmp manages the multi-domain solution process and coordinates the transfer of information at the inter-
faces. The multi-domain time-stepping algorithm is discussed in more detail in Section 4.

The entire domain of interest, X, is discretized using a composite overlapping grid, G. Each fluid or solid sub-domain will
itself be discretized with an overlapping grid, Gd, with the global overlapping grid G containing all the sub-overlapping grids,
Fig. 2.
the uni
bounda
G ¼ [N d
d¼1Gd: ð10Þ
The overlapping grid G consists of a set of N grid component grids Gg , i.e.,
G ¼ fGgg; g ¼ 1;2; . . . ;N grid:
The component grids cover X. Similarly, the overlapping grid, Gd, for a sub-domain, will consist of a set of overlapping com-
ponent grids which are a sub-set of the grids in G.

Each component grid is a logically rectangular, curvilinear grid defined by a smooth mapping Cg from parameter space r
(e.g. the unit-cube in three-dimensions) to physical space x:
x ¼ CgðrÞ; r 2 ½0;1�3; x 2 R3:
The mapping is used to define the metric derivatives @x=@r and the grid points at any desired resolution. Variables defined on
a component grid, such as the coordinates of the grid points, are stored in rectangular arrays. For example, grid vertices are
represented as the array
xg
i : grid vertices; i ¼ ði1; i2; i3Þ; ik ¼ 0; . . . ;Nk; k ¼ 1;2;3;
where Nk is the number of grid cells in k-coordinate direction. We note that grid vertex information and other mapping infor-
mation are not stored for Cartesian grids. This usually results in a considerable savings in memory use since most of the grid
points belong to Cartesian grids for a typical overlapping grid.
The top view shows an overlapping grid consisting of two structured curvilinear component grids. The bottom views show the component grids in
t square parameter space. Grid points are classified as discretization points, interpolation points or unused points. Ghost points are used to apply
ry conditions.
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Fig. 2 shows a simple overlapping grid consisting of two component grids, an annular boundary fitted grid and a background
Cartesian grid. The top view shows the overlapping grid while the bottom view shows each grid in parameter space. In this exam-
ple the annular grid cuts a hole in the Cartesian grid so that the latter grid has a number of unused points which are marked as
open circles. The other points on the component grids are classified as either discretization points (where the PDE or boundary
conditions are discretized) or interpolation points. This information is supplied by the overlapping grid generator Ogen [48] and
is held in an integer mask array. In addition, each boundary face of each component grid is classified as either a physical boundary
(where boundary conditions are to be implemented), a periodic boundary or an interpolation boundary. Typically, one or more
layers of ghost points are created for each component grid to aid in the application of boundary conditions.

The PDE’s that define the evolution of the fluid and solid are discretized with a finite difference or finite-volume approxima-
tion with all variables defined at the nodes. For example, consider approximating the generalized Laplace operator, L defined by
Fig. 3.
bounda
non-ne
Lw ¼ r � ðarwÞ; ð11Þ
where a ¼ aðxÞ is a real valued coefficient. A straight-forward approach to discretize L on a curvilinear grid is to use the map-
ping method, as follows. Using the chain rule, the operator L can be written in general curvilinear coordinates in nd space-
dimensions as
Lw ¼
Xnd

i¼1

Xnd

j¼1

Xnd

k¼1

a
@rk

@xi

@rj

@xi

@2w
@rj@rk

þ @rk

@xi
a
@

@rk

@rj

@xi

� �
þ @a
@rk

@rj

@xi

� �
@w
@rj

: ð12Þ
The metric terms @rj=@xk are computed from the mapping that defines the grid and are thus assumed to be known. The deriv-
atives with respect to the parameter space coordinates rj can be approximated with central difference approximations. The
operator L can also be written in conservation form, or self-adjoint form, in general curvilinear coordinates as
Lw ¼ 1
J

Xnd

j¼1

Xnd

k¼1

@

@rj
Ajk @w

@rk

� �
; Ajk ¼ a J

Xnd

l¼1

Xnd

m¼1

@rj

@xl

@rk

@xm
; ð13Þ
where J denotes the determinant of the Jacobian matrix ½@xj=@rk�. A careful discretization of this last form of the operator
leads to symmetric and compact discrete approximations of any order of accuracy [26]. These approximations are general-
ized finite-volume approximations. See [44] for more details on discretizing the incompressible Navier–Stokes equations on
curvilinear grids.

3.1. Boundary conditions

The boundary conditions we use for the incompressible Navier–Stokes equations and the heat equation are given in Figs. 3
and 4, respectively. We consider inflow boundaries, outflow boundaries, no-slip walls and slip-walls. The conditions imposed
on each boundary are divided into those labeled physical which come from the analytic definition of a well-posed initial-
boundary-value problem and those labeled numerical which are extra conditions needed for the discretized problem in order
to define an accurate and stable approximation. Numerical boundary conditions typically determine ghost point values of the
discrete solution. Note that there is no explicit physical boundary condition for the pressure at walls or inflow. The boundary
conditionr � u ¼ 0, which takes the place of an explicit condition on the pressure, ensures that the solution to the INS Eqs. (2)
and (3) satisfies r � u ¼ 0 everywhere. The numerical boundary condition for the pressure at walls or inflow is
pn ¼ Pbðu; TÞ � �n � mr�r� uþ @tuþ ðu � rÞuþ agTð Þ; ð14Þ
and is derived from the normal component of the momentum equations. This numerical boundary condition is used when
solving the Poisson equation for the pressure. See [49,46] for a discussion of this boundary condition. The boundary condi-
Boundary conditions for the incompressible Navier–Stokes equations. The outward normal at the boundary is denoted by n, tangent vectors at the
ry are sl , l ¼ 1;2 and Pb is defined by Eq. (14). The functions guðx; tÞ;gnðx; tÞ; gT ðx; tÞ and gpðx; tÞ are given forcing functions while a,b, c and d are
gative constants with aþ b > 0 and c þ d > 0.



Fig. 4. Boundary conditions for the heat equation, where gT ðx; tÞ is a given forcing function and a and b are non-negative constants with aþ b > 0.
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tion on the temperature can be Dirichlet, T ¼ gT , Neumann, Tn ¼ gT , or a mixed condition aTn þ bT ¼ gT . For further details on
the discretization of the boundary conditions, the reader is referred to Henshaw [44], Henshaw and Petersson [46] and Hen-
shaw et al. [45].

3.2. Explicit time-stepping and coupled interface equations (CI)

We consider two approaches for solving the interface equations. In the first approach the interface equations are solved as
a coupled system of equations using a centered approximation. This approach is generally used when the interior equations
are advanced with explicit time-stepping and requires no iteration on the interface values. The CI approach could be used
directly with implicit time-stepping but would require the formation of a coupled implicit system of equations for the tem-
perature across all domains. For a second-order accurate approximation we use the two interface equations (6) and (7) with
q ¼ 1,
½Kn � rT�I ¼ 0;
½DDT þ f �I ¼ 0: ð15Þ
These two conditions will determine the discrete solution values on the first ghost line of the two domains, one ghost line for
each domain. Here we have assumed that u ¼ 0 on the interface and that the coefficientsK; q and C are constant within each
sub-domain. This approximation differs from those usually found in the literature through the use of Eq. (15). For the case of
an interface between two solid regions, for example, the time-continuous space-discrete approximation is given by
@tTm;i ¼ DmDhTm;i þ fmðxm;i; tÞ; for i 2 Gd
m; and sub-domains m ¼ 1;2; ð16Þ

K1n1;i � rhT1;i ¼ K2ð�n2; jÞ � rhT2; j; for i 2 I1;2
h ; j 2 I2;1

h ; ð17Þ
D1DhT1;i þ f1ðxi; tÞ ¼ D2DhT2; j þ f2ðx2; jv ; tÞ; for i 2 I1;2

h ; j 2 I2;1
h : ð18Þ
Here Tm;i � Tðxm;i; tÞ denotes the discrete approximation to the temperature on a grid Gm of sub-domain Xm with grid points
xm;i and interface normals nm;i. Dh and rh denote discrete approximations to D and r, respectively. These operators depend
on the grid Gd

m they are discretized on, but this should be clear from context. Note that we use �n2;j since the discrete nor-
mals are defined as outward normals. Equations are also needed at physical boundaries, interpolation points and periodic
boundaries but these are left out in order to focus on the interface treatment. The interior equation (16) is applied at interior
discretization points, boundary points and interface points, the set of these grid points being denoted by Gd

m. The set of points
on component grid Gp that lie on the interface with grid Gq are denoted by Ip;q

h . We have assumed that the grid points align
on the interface so that the sets Ip;q

h and Iq;p
h define the same set of physical points. This assumption is used throughout this

paper. The more general case of non-matching grid points on the interface is left to future work. The interface equations (17)
and (18) are discrete approximations that are centered on the interface and will be used to determine the values on the ghost
points that are adjacent to the interface points. Use of centered schemes for boundaries generally results in more accurate
and more stable approximations compared to using one-sided approximations based on extrapolation.

We now illustrate how the discrete solution is advanced in time using the forward-Euler method. The discrete solution,
Tn

m;i � Tðxm;i; tnÞ, with tn ¼ nDt, is first advanced at all interior and interface points using Eq. (16),
Tnþ1
m;i ¼ Tn

m;i þ DtðDmDhTn
m;i þ fmðxm;i; tnÞÞ; for i 2 Gd

m; m ¼ 1;2: ð19Þ
Eqs. (17) and (18) are then used to determine the ghost point values adjacent to the interface at the new time level,
K1n1;i � rhTnþ1
1;i ¼ K2ð�n2; jÞ � rhTnþ1

2; j ; for i 2 I1;2
h ; j 2 I2;1

h ; ð20Þ
D1DhTnþ1

1;i þ f1ðxi; tnþ1Þ ¼ D2DhTnþ1
2; j þ f2ðx2; j; tnþ1Þ; for i 2 I1;2

h ; j 2 I2;1
h : ð21Þ
In practice we often use a predictor–corrector time-stepping method in which case the interface equations are applied after
the predictor and corrector steps. Application of Eqs. (19)–(21) should ensure that Tnþ1

1;i ¼ Tnþ1
2; j (to round-off error) for points

on the interface. On non-orthogonal grids, condition (21) will couple the solutions on the ghost points due to cross-derivative
terms in the approximation to Dh. To avoid solving a coupled system of equations along the interface we use the current best
guess values for ghost points values when they are needed by the cross-derivatives (using extrapolation in space for the
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predictor step). We then enforce the continuity of temperature directly after each time-step using a weighted average of the
computed interface values, following the approximation developed by Patankar [33],
Tnþ1
1;i ¼ Tnþ1

2; j ¼
K1
eT nþ1

1;i þK2
eT nþ1

2; j

K1 þK2
; for i 2 I1;2

h ; j 2 I2;1
h ; ð22Þ
where eT nþ1
1;i and eT nþ1

2; j are the values determined from Eqs. (19)–(21). The stability and accuracy of the approximations (16)–
(18) are studied in Section 5. Unlike the segregated approach, discussed in the next section, the stability of the coupled ap-
proach does not depend on the relative sizes of K and D in the two domains.

3.3. Implicit time-stepping and segregated interface equations (SI)

The second approach used to solve the interface equations is based on segregating the interface equations and applying
one of the interface equations as a boundary condition for one domain and the other as the boundary condition for the sec-
ond domain. We generally use this approach when one or both of the domains uses implicit time-stepping. A segregated
approach is commonly used in the literature with both explicit and implicit time-stepping. Some care is required in applying
the segregated method since the stability of the method depends on which interface equation is associated with which do-
main and on the relative sizes of K and D in the two domains as discussed in Section 6.

In the segregated approach the solution on each sub-domain is advanced using one of the interface conditions as a bound-
ary condition. For example, the solution on one domain may be advanced for one time-step using an implicit method with a
Dirichlet condition that sets the temperature on the interface
Tnþ1
1;i ¼ L

1ðTnþ1
1;i ; T

n
1;i; . . .Þ; for i 2 Gd

1; ð23Þ
Tnþ1

1;i ¼ T�2; j; for i 2 I1;2
h ; j 2 I2;1

h : ð24Þ
Here T�2; j is some guess at the temperature on the interface and L1 denotes an implicit time-stepping operator. Note that we
apply the interior equation on the interface in addition to the Dirichlet condition and this extra equation determines the
solution on the ghost points:
L1ðTnþ1
1;i ; T

n
1;i; . . .Þ ¼ T�2; j; for i 2 I1;2

h ; j 2 I2;1
h : ð25Þ
The solution on the adjacent domain is advanced using a Neumann boundary condition based on the continuity of heat flux
as an interface condition
Tnþ1
2;i ¼ L

2ðTnþ1
2;i ; T

n
2;i; . . .Þ; for i 2 Gd

2; ð26Þ
K2ð�n2; jÞ � rhTnþ1

2; j ¼ K1n1;i � rhT�1;i; for i 2 I1;2
h ; j 2 I2;1

h ; ð27Þ
where some guess for the heat flux from domain one is used. In general we will iterate these equations some number of
times using successively better values for n1;i � rhT�1;i and T�2; j. If we iterate to convergence, the results will satisfy the same
centered interface conditions (20) and (21) that are satisfied in the coupled approach.

In Section 6, we analyze this Dirichlet–Neumann segregated approach and discuss iteration strategies. We also consider a
generalization that uses a mixed (Robin) approximation on both sides of the interface.
4. The multi-domain time-stepping algorithm

In this section we describe our approach for time-stepping a multi-domain problem. We assume that we have a separate
physics solver for each domain. For the purposes of this paper the domain solver will either solve the INS equations or the
heat equation. There may be multiple INS solvers and multiple heat equation solvers. The different domain solvers are cou-
pled through the interface conditions (5) and (6). These interface equations are solved with a coupled (CI) or segregated (SI)
approach as described in Sections 3.2 and 3.3, respectively. Each domain solver is assumed to time-step its equations with an
explicit or implicit time-stepping technique such as forward-Euler, backward-Euler, or an (implicit/explicit) predictor–cor-
rector. To be more concrete we suppose that each domain solver uses a time-stepping approach that is of the form of the
following generic implicit predictor–corrector algorithm given by
Lpvð0Þ ¼ fpðun;un�1; . . .Þ ðpredictorÞ;
LcvðkÞ ¼ fcðvðk�1Þ;un; . . .Þ ðcorrector; k ¼ 1;2; . . . ;ncÞ;
unþ1 ¼ vðnc Þ:
Here un is the solution at time tn; vðkÞ are intermediate solution values, and Lp and Lc denote possibly implicit operators that
are solved at the predictor and corrector steps, respectively. When we solve the interface equations by iteration, we may
need to take ni additional corrector steps over and above the number, nc , used by default in the above scheme.
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A one-dimensional model problem on the interval ð�1;1Þ with material interface at x ¼ 0 is
Fig. 6.
interfac
@tu1 ¼ D1@
2
x u1; for x < 0; ð28Þ

@tu2 ¼ D2@
2
x u2; for x > 0; ð29Þ

u1 � u2 ¼ 0; at x ¼ 0; ; ð30Þ
K1@xu1 �K2@xu2 ¼ 0; at x ¼ 0; ð31Þ
u1ðx;0Þ ¼ u0

1ðxÞ; u2ðx;0Þ ¼ u0
2ðxÞ; at t ¼ 0; ð32Þ

ku1k <1; ku2k <1; ð33Þ
where u1 ¼ u1ðx; tÞ is defined on the left semi-infinite interval ð1;0� and u2 ¼ u2ðx; tÞ on the right semi-infinite interval
½0;1Þ. The initial conditions are assumed to have compact support and kumk; m ¼ 1;2, denotes the L2 norm of um over
the appropriate interval. As discussed previously, by taking the time derivative of the jump condition (30) and using the inte-
rior equation it follows that
D1@
2
x u1 �D2@

2
x u2 ¼ 0; at x ¼ 0: ð34Þ
We assume that the initial conditions satisfy consistency conditions such as u0
1ð0Þ ¼ u0

2ð0Þ and D1@
2
x u0

1ð0Þ ¼ D2@
2
x u0

2ð0Þ.
Introduce a one-dimensional overlapping grid as shown in Fig. 6. The domain is discretized with a grid with spacing h1 for

x < 0 and a grid with spacing h2 for x > 0. Let x1; j ¼ jh1 and x2; j ¼ jh2 denote the grid points on either side of the interface. A
(formally) second-order accurate semi-discrete approximation is
@tU1; j ¼ D1DþD�U1; j; for j ¼ 0;�1;�2 . . . ; ð35Þ
@tU2; j ¼ D2DþD�U2; j; for j ¼ 0;1;2; . . . ; ð36Þ
K1D0U1;0 ¼ K2D0U2;0; ð37Þ
D1DþD�U1;0 ¼ D2DþD�U2;0; ð38Þ
U1; jð0Þ ¼ u0

1ðx1; jÞ; for j ¼ 1; 0;�1;�2 . . . ; ð39Þ
U2; jð0Þ ¼ u0

2ðx2; jÞ; for j ¼ �1;0;1;2; . . . ; ð40Þ
kU1kh <1; kU2kh <1: ð41Þ
Here U1; jðtÞ and U2; jðtÞ denote the approximations to u1 and u2 on the grids while DþUm; j ¼ ðUm; jþ1�
Um; jÞ=hm; D�Um; j ¼ ðUm; j � Um; j�1Þ=hm and D0Um; j ¼ ðUm; jþ1 � Um; j�1Þ=ð2hmÞ denote the usual finite difference operators
[50]. The discrete norms of the grid functions are defined from kU1k2

h ¼
P0

j¼�1jU1; jj2h1 and kU2k2
h ¼

P1
j¼0jU2; jj2h2. Approxi-

mations to the jump conditions (31) and (34) have been imposed. The basic jump condition U1;0ðtÞ ¼ U2;0ðtÞ will also hold in
the discrete case since @tU1;0 ¼ @tU2;0 for all time by (35) and (38), and since we assume the initial conditions satisfy (38) and
U1;0ð0Þ ¼ U2;0ð0Þ.

Theorem 1. The solution to the one-dimensional interface problem (35)–(41) is stable and second-order accurate.

Proof. See Appendix A. h

Note: The interface equations (37) and (38) can be solved for the values at the ghost points, U1;þ1; U2;�1 in terms of interior
values,
U1;þ1 ¼ ½2ðeD1 � eD2ÞeK2U2;0 þ 2eD2
eK2U2;1 þ ðeD2

eK1 �D1
eK2ÞU1;�1�=½eD1

eK2 þ eD2
eK1�; ð42Þ

U2;�1 ¼ ½2ðeD2 � eD1ÞeK1U1;0 þ 2eD1
eK1U1;�1 þ ðeD1

eK2 �D2
eK1ÞU2;1�=½eD1

eK2 þ eD2
eK1�; ð43Þ
where eDm ¼ Dm=h2
m and eKm ¼ Km=hm. The interface boundary conditions thus have the useful property that when

K1 ¼ K2; D1 ¼ D2 and h1 ¼ h2 the discrete solution is the same as if there were no interface at all: U1;1 ¼ U2;1 and
U2;�1 ¼ U1;�1.
The overlapping grids for a one-dimensional material interface located at x ¼ 0. The ghost points U2;�1 and U1;1 are introduced on the two grids at the
e.
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We have shown that the time-continuous and space-discrete problem is stable with the centered interface conditions. We
now discretize in time with forward-Euler and show that for the fully discrete case the scheme is stable provided the time-
step Dt is chosen to satisfy the usual von Neumann stability conditions for each side of the interface. Discretizing Eqs. (35)–
(41) using forward-Euler in time gives the approximation
ðUnþ1
1; j � Un

1; jÞ=Dt ¼ D1DþD�Un
1; j; for j ¼ 0;�1;�2; . . . ; ð44Þ

ðUnþ1
2; j � Un

2; jÞ=Dt ¼ D2DþD�Un
2; j; for j ¼ 0;1;2; . . . ; ð45Þ

K1D0Unþ1
1;0 ¼ K2D0Unþ1

2;0 ; ð46Þ
D1DþD�Unþ1

1;0 ¼ D2DþD�Unþ1
2;0 ; ð47Þ

U0
1; j ¼ u0

1ðx1; jÞ; for j ¼ 1;0;�1;�2; . . . ; ð48Þ
U0

2; j ¼ u0
2ðx2; jÞ; for j ¼ �1;0;1;2; . . . ; ð49Þ

kUnþ1
1 kh <1; kUnþ1

2 kh <1; ð50Þ
where Un
m; j � umðxm; j; tnÞ. These equations will be stable in the sense of Godunov–Ryabenkii [50] provided there are no solu-

tions to the homogeneous equations (i.e. with u0
1ðx1; jÞ ¼ 0 and u0

2ðx2; jÞ ¼ 0) of the form
Un
1; j ¼ AznÛ1; j; ð51Þ

Un
2; j ¼ BznÛ2; j ð52Þ
with jzj > 1.

Theorem 2. Solutions to Eqs. (44)–(50) are stable in the sense of Godunov–Ryabenkii provided the time-step Dt satisfies the von
Neumann stability conditions
dm �
DmDt

h2
m

<
1
2
; m ¼ 1;2: ð53Þ
Proof. See Appendix A. h

The results of Theorems 1 and 2 are shown to apply to more complex two- and three-dimensional conjugate heat transfer
problems in Section 7. These results show that the coupled interface approach with second-order explicit time-stepping is
second-order accurate in space and time. Furthermore, we note that in all the cases considered, the coupled method is stable
provided the time-step is chosen as the minimum of the time steps required to make the sub-domain solvers stable. Thus
there is no need to reduce the time-step due to any effects of the interface approximation.
6. Domain implicit time-stepping and the solution of the interface equations by iteration

In this section we analyze the segregated interface method, as described in Section 3.3, for solving the interface equations
when the sub-domains are advanced in a weakly coupled fashion with implicit time-stepping. We suppose that we can ad-
vance each sub-domain problem separately (with some appropriate conditions at the interface) but we do not want to solve
the full coupled implicit problem. Implicit methods require interface values at the new time level and some approximate
values must be provided. We define an iteration, as part of a predictor–corrector scheme, to solve the coupled problem.
In Section 6.1 we study the commonly used Dirichlet–Neumann (DN) approach that uses a Dirichlet condition at the inter-
face of one domain and a Neumann condition at the interface of the second domain. The convergence properties of this iter-
ation are analyzed. In Section 6.2 we analyze the case when a mixed condition is applied at both interfaces and show that
this approach has some advantages over the DN approach.

6.1. Analysis of the segregated interface (SI) method

We consider the model problem of solving the heat equation in two domains separated by an interface using an implicit
time-stepping method. The heat conduction model problem is defined on the region X consisting of two adjacent squares,
X ¼ ð�a; bÞ � ð0;2pÞ ¼ X1

S
X2 where the left domain is X1 ¼ ð�a;0Þ � ð0;2pÞ, the right domain is X2 ¼ ð0; bÞ � ð0;2pÞ and

the interface is XI ¼ 0� ð0;2pÞ. The initial-boundary-value problem (IBVP) we wish to solve is
@tum ¼ DmDum þ f ; for x 2 Xm; m ¼ 1;2; ð54Þ
½umð0; yÞ�I ¼ 0; for x 2 XI; m ¼ 1;2; ð55Þ
½Km@xumð0; yÞ�I ¼ 0; for x 2 XI; m ¼ 1;2; ð56Þ
umðx; 0Þ ¼ u0

mðxÞ; for x 2 Xm; m ¼ 1;2; ð57Þ
u1ð�a; yÞ ¼ gð�a; yÞ; u2ðb; yÞ ¼ gðb; yÞ; for x 2 XI; ð58Þ
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where um ¼ umðx; tÞ and we look for solutions that are 2p-periodic in the y-direction. We discretize this problem in time but
for clarity keep space continuous. We use the implicit h-scheme given by
Unþ1
m ðxÞ � Un

mðxÞ
Dt

¼ hDmDUnþ1
m ðxÞ þ ð1� hÞDmDUn

mðxÞ þ f ðx; tnÞ; for x 2 Xm; m ¼ 1;2; ð59Þ

½Unþ1
m ð0; yÞ�I ¼ 0; for x 2 XI; m ¼ 1;2; ð60Þ

½Km@xUnþ1
m ð0; yÞ�I ¼ 0; for x 2 XI; m ¼ 1;2; ð61Þ

U0
mðx;0Þ ¼ u0

mðxÞ; for x 2 Xm; m ¼ 1;2; ð62Þ

Unþ1
1 ð�a; yÞ ¼ gð�a; yÞ; Unþ1

2 ðb; yÞ ¼ gðb; yÞ; for x 2 XI: ð63Þ
Here Dt > 0 is the time step, Un
mðxÞ � umðx; tnÞ, tn ¼ nDt and 0 < h 6 1. We want to solve the implicit equations (59)–(61),

(63) for the solution Unþ1
m at the new time level. The interface equations (60) and (61) couple the solutions on the two do-

mains. We can solve these equations by an iteration. We wish to understand the convergence characteristics of this iteration.
We first rewrite Eqs. (59)–(61) and (63) as an equation for Unþ1

m ,
DUnþ1
m � 1

hDmDt
Unþ1

m ¼ Fm; for x 2 Xm; m ¼ 1;2; ð64Þ

½Unþ1
m ð0; yÞ�I ¼ 0; for x 2 XI; m ¼ 1;2; ð65Þ

½Km@xUnþ1
m ð0; yÞ�I ¼ 0; for x 2 XI; m ¼ 1;2; ð66Þ

Unþ1
1 ð�a; yÞ ¼ gð�a; yÞ; Unþ1

2 ðb; yÞ ¼ gðb; yÞ; for x 2 XI: ð67Þ
Here Fm ¼ �½Un
m=Dt þ ð1� hÞDmDUn

mðxÞ þ f ðx; tnÞ�=ðhDmÞ is known. Let UðjÞm � Unþ1
m ; j ¼ 0;1;2; . . . denote a sequence of iterates

and define the following iteration for j > 0,
DUðjÞm �
1

hDmDt
UðjÞm ¼ Fm; for x 2 Xm; m ¼ 1;2; ð68Þ

K1@xUðjÞ1 ð0; yÞ ¼ K2@xUðj�1Þ
2 ð0; yÞ; for x 2 XI; ð69Þ

UðjÞ2 ð0; yÞ ¼ UðjÞ1 ð0; yÞ; for x 2 XI; ð70Þ

UðjÞ1 ð�a; yÞ ¼ gð�a; yÞ; UðjÞ2 ðb; yÞ ¼ gðb; yÞ; for x 2 XI: ð71Þ
We first solve for UðjÞ1 using (68) and the Neumann interface condition (69) and then solve for UðjÞ2 using (68) and the Dirichlet
interface condition (70). To analyze this iteration we proceed in the usual way and first subtract out a particular solution to
Eqs. (64) and (63) that satisfies homogeneous Dirichlet conditions at the interface. We also Fourier transform in y (with dual
variable k). This results in the following iteration for the functions W ðjÞ

m ðx; kÞ; j ¼ 1;2;3; . . .,
@2
x W ðjÞ

1 ¼ b2
1W ðjÞ

1 ; @2
x W ðjÞ

2 ¼ b2
2W ðjÞ

2 ; ð72Þ
K1@xW ðjÞ

1 ð0; kÞ ¼ K2@xW ðj�1Þ
2 ð0; kÞ þ fIðkÞ; W ðjÞ

2 ð0; kÞ ¼W ðjÞ
1 ð0; kÞ; ð73Þ

W ðjÞ
1 ð�a; kÞ ¼ 0; W ðjÞ

2 ðb; kÞ ¼ 0; ð74Þ
where
b2
m ¼ k2 þ 1

hDmDt
:

The solution to these equations satisfying the boundary conditions (74) is of the form (note that bm > 0)
W ðjÞ
1 ¼ Aj sinhðb1ðxþ aÞÞ; ð75Þ

W ðjÞ
2 ¼ Bj sinhðb2ðx� bÞÞ: ð76Þ
Substitution of Eqs. (75) and (76) into the interface conditions (73) gives
AjK1b1 coshðb1aÞ ¼ Bj�1K2b2 coshðb2bÞ þ fI;

Bj sinhð�b2bÞ ¼ Aj sinhðb1aÞ:
Whence
Aj ¼ �
K2

K1

b2

b1

tanhðb1aÞ
tanhðb2bÞAj�1 þ

1
b1
K1 coshðb1aÞfI:
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This iteration will converge provided the amplification factor, A, defined by
A � �K2

K1

b2

b1

tanhðb1aÞ
tanhðb2bÞ ; ð77Þ

¼ �K2

K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðhD2DtÞ þ k2

1=ðhD1DtÞ þ k2

vuut tanhðb1aÞ
tanhðb2bÞ ; ð78Þ
satisfies jAj < 1. For 1=ðhDmDtÞ 	 k2 or 1=ðhDmDtÞ 
 k2 we find that
A �
�K2
K1

ffiffiffiffiffi
D1
D2

q tanhðb1aÞ
tanhðb2bÞ ; for 1=ðhDmDtÞ 	 k2

;

�K2
K1

tanhðb1aÞ
tanhðb2bÞ ; for 1=ðhDmDtÞ 
 k2

:

8>>><>>>: ð79Þ
Note that in many cases b1a	 1 and b2b	 1 in which case tanhðb1aÞ � 1 and tanhðb2bÞ � 1 in the above formulae. Then for
small wave-numbers (smooth components of the solution), the convergence rate of the interface iteration will be approxi-
mated by
jAj � K2

K1

ffiffiffiffiffiffi
D1

D2

r
: ð80Þ
We see that the convergence rate depends both on the ratio of the thermal conductivities and the square root of the ratio of
the thermal diffusivities.

If jAj > 1 then there is no convergence. In this case, however, we can redefine the basic iteration (68)–(71) so that the
Neumann interface condition is imposed on UðjÞ2 and the Dirichlet on UðjÞ1 and then the new amplification factor is the inverse
of A. Thus if A 
 1 (or A 	 1) then the basic iteration (or the basic iteration with interface conditions switched) will work
well. The difficult case is when A � 1 for then the iteration will converge slowly. For this difficult case we can consider accel-
eration procedures to improve the convergence rate of the iteration. One of the simplest acceleration procedures uses a
relaxation parameter. Define a relaxed iteration with relaxation parameter x by
Aj ¼ ð1�xÞAj�1 þx AAj�1 þ
1

b1K1 coshðb1aÞ fI

� �
;

in which case
Aj ¼ ½1�xð1þ jAjÞ�Aj�1 �x
1

b1K1 coshðb1aÞ fI:
This iteration will converge provided 0 < x < 2xopt where the optimal value for x is
xopt ¼
1

1þ jAj : ð81Þ
Note 1: The under-relaxed iteration can be implemented in practice by adjusting the Neumann interface condition (69),
using instead,
K1@xUðjÞ1 ð0; yÞ ¼ ð1�xÞK1@xUðj�1Þ
1 ð0; yÞ þxðK2@xUðj�1Þ

2 ð0; yÞÞ: ð82Þ
Note 2: A simple strategy for choosing a value for x for general interfaces is as follows. Solve the problem with x ¼ 1 and
measure the convergence rate of the residuals in the interface equations. Choose x from Eq. (81) using this convergence rate
in place of jAj.

6.2. The segregated interface (SI) method with mixed interface conditions

We now consider more general segregated interface conditions where instead of applying a Dirichlet interface condition
on one domain and a Neumann interface condition on the other, we apply a mixed condition on both sides. Following the
development in the previous section, we replace Eqs. (68)–(71) with
DUðjÞm �
1

hDmDt
UðjÞm ¼ Fm; m ¼ 1;2; ð83Þ

ða1nK1@x þ a10ÞUðjÞ1 ð0; yÞ ¼ ða1nK2@x þ a10ÞUðj�1Þ
2 ð0; yÞ; ð84Þ

ð�a2nK2@x þ a20ÞUðjÞ2 ð0; yÞ ¼ ð�a2nK1@x þ a20ÞUðjÞ1 ð0; yÞ; ð85Þ
UðjÞ1 ð�a; yÞ ¼ gð�a; yÞ; UðjÞ2 ðb; yÞ ¼ gðb; yÞ: ð86Þ
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Note that the Dirichlet–Neumann approach of the previous section corresponds to the choice a1n ¼ 1; a20 ¼ 1 and
a10 ¼ a2n ¼ 0. If the iteration (83)–(86) converges to some values U�m, then
a1n a10

�a2n a20

� � K1@xU�1 �K2@xU�2
U�1 � U�2

� �
¼ 0: ð87Þ
Thus, provided the determinant of the coefficient matrix is non-zero, a1na20 þ a10a2n – 0, it follows that if the iteration con-
verges then both interface conditions will be satisfied. Proceeding as before, we are led to analyze the following iteration
@2
x W ðjÞ

1 ¼ b2
1W ðjÞ

1 ; @2
x W ðjÞ

2 ¼ b2
2W ðjÞ

2 ; ð88Þ
W ðjÞ

1 ð�aÞ ¼ 0; W ðjÞ
2 ¼ 0; ð89Þ

ða1nK1@x þ a10ÞW ðjÞ
1 ð0; yÞ ¼ ða1nK2@x þ a10ÞW ðj�1Þ

2 ð0; yÞ þ a1nf̂ IðkÞ; ð90Þ
ð�a2nK2@x þ a20ÞW ðjÞ

2 ð0; yÞ ¼ ð�a2nK1@x þ a20ÞW ðjÞ
1 ð0; yÞ � a2nf̂ IðkÞ: ð91Þ
The solution to these equations is also of the form (75) and (76) and the amplification factor for the mixed interface condi-
tions is
A ¼ a1nK2b2 � a10 tanhðb2bÞ
a1nK1b1 þ a10 tanhðb1aÞ

a2nK1b1 � a20 tanhðb1aÞ
a2nK2b2 þ a20 tanhðb2bÞ : ð92Þ
We note then that if a1n ¼ a2n ¼ a10 ¼ a2n ¼ 1
2 then
A ¼ K1b1 � tanhðb1aÞ
K1b1 þ tanhðb1aÞ

K2b2 � tanhðb2bÞ
K2b2 þ tanhðb2bÞ ; ð93Þ
so that jAj < 1 and the iteration will always converge (although the convergence rate may not be very good). Although the
choice a10 ¼ a1nK2b2= tanhðb2bÞ and a20 ¼ a2nK1b1= tanhðb1aÞ would make A ¼ 0, this is not practical since bm ¼ bmðkÞ de-
pends on wave-number k. After some numerical experimentation we have arrived at the following choice for the coefficients
of the mixed conditions that seems to give reasonable results,
a1n ¼ 1; a2n ¼ 1;
a10 ¼ c2

2=c1; a20 ¼ c2
1; if c1 P c2;

a10 ¼ c2
2; a20 ¼ c2

1=c2; if c1 < c2;

(
ð94Þ
where
cm ¼ Kmbmðk
�
mÞ ¼ Km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

hDmDt
þ ðk�mÞ

2

s
; ð95Þ
and ðk�mÞ
2 ¼ 0:1=ðDmDtÞ; m ¼ 1;2, is a rough guess of a wave-number where the errors are significant. This form is motivated

by the fact that when c1 	 c2 or c2 	 c1 the mixed condition will be close to the Dirichlet–Neumann condition and should
converge rapidly. When c1 � c2 and c1 P c2 the iteration should also converge rapidly since
A � �K2b2ðkÞ � K2b2ðk
�
2Þ tanhðb2bÞ

K1b1ðkÞ þ K2b2ðk
�
2Þ tanhðb1aÞ

tanhðb1aÞ
tanhðb2bÞ : ð96Þ
A similar result holds when c1 � c2 and c1 < c2. In Section 6.3, we present some numerical results using the mixed interface
condition with parameters chosen following (94).

6.3. Results for implicit time-stepping and interfaces

In this section we present computational results that provide confirmation of the analyzes of the previous sections. We
solve some conjugate heat transfer problems using the segregated interface method and measure the convergence rates of
the iterations. These convergence rates are compared to the theoretical values. We consider using the Dirichlet–Neumann
interface condition (DN) discussed in Section 6.1, as well as using a mixed interface condition (M) described in Section 6.2.

From Eq. (80) we define an estimated convergence rate of the DN approach,
rest ¼
K2

K1

ffiffiffiffiffiffi
D1

D2

r
:

This is the convergence rate that might be expected when a Neumann condition is applied at the interface to sub-domain X1,
with parameters K1; D1 and a Dirichlet condition is applied at the interface to sub-domain X2, with parameters K2; D2.

We begin by considering a domain consisting of two adjacent squares, Xs ¼ X1 [X2 where X1 ¼ ð�1;0Þ � ð0;1Þ and
X2 ¼ ð0;1Þ � ð0;1Þ. We define a grid Gs for Xs using Cartesian grids on each domain with grid spacing equal to
Dx ¼ 1=320. We solve the heat equation in each sub-domain with a second-order accurate implicit predictor–corrector
method where the corrector step is given by the implicit h-scheme (59) with h ¼ 1

2 and Dt ¼ :01. The boundary conditions



Fig. 7. Convergence rates for solving the interface equations by iteration with the segregated interface approach and weakly coupled implicit time-
stepping. The interface condition (IC) is either Dirichlet–Neumann (DN) or mixed (M). rest is the estimated convergence rate for the DN condition. rcomp is
the computed convergence rate. x is the relaxation parameter computed from rcomp using Eq. (81). rcompðxÞ is the convergence rate of the relaxed iteration
using this value of x.
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on non-interface boundaries are taken as Dirichlet (similar results are obtained when Neumann boundary conditions are
used). The exact solution, determined with the method of analytic solutions (Section 7.1) is a fourth-degree polynomial.
At each time-step we solve the interface equations by the iteration (68)–(71). An initial guess for the right-hand-side to
the interface equations is determined by extrapolation in time from previous values. We estimate the average convergence
rate, rcomp, from the reduction in the residual in the interface equations over a total of N iterations,
rcomp ¼
RðNÞ

Rð1Þ

 !1=N

;

RðjÞ �max
i; j

jUðjÞ1; i � UðjÞ2; jj; jK1DnUðjÞ1; i �K2DnUðjÞ2; jj
n o

;

where the maximum is taken over all grid values on the interface and Dn is the discrete approximation to the normal deriv-
ative. We solve the interface equations until RðNÞ < �where � ¼ 10�10 for the computations given in this section. The values of
rcomp are then averaged over a few time steps to give the tabulated result. Fig. 7 shows some results for different values of
ðKm;DmÞ. The estimated convergence rate rest is generally a good approximation to the computed value rcomp for cases that
use the DN conditions. For example, in case ‘‘1” the estimated converge rate is rest ¼ 0:45 and the computed is r comp ¼ 0:44.
We also show the convergence rate when a relaxation parameter, x � 1=ð1þ rcompÞ, is used (82). In some of these cases, the
convergence rate at each iteration, Rðjþ1Þ=RðjÞ, can be quite variable with the initial iterations tending to converge much faster
than later iterations. This can be attributed to the smooth components of the error converging rapidly on the first few iter-
ations, while high-frequency modes of the error become more important for later iterations. Fig. 7 also shows results for the
disk-in-a-square grid, Gð8Þ, defined in Section 7.2. The estimated and computed convergence rates for the DN interface con-
dition agree well in this case as well. The mixed interface condition converges very rapidly for case ‘‘8”,
D1 ¼ 1; K1 ¼ 1; D2 ¼ 1 and K2 ¼ 1 which is the difficult case for the DN approach. The mixed condition generally gives good
results. Case ‘‘3” for the mixed condition on the two-squares problem does not converge as well as case ‘‘8” for the disk-in-a-
square problem. The convergence rates for case ‘‘3” start out very small but then slow down due to boundary effects where
the interface meets the adjacent top and bottom boundaries. In case ‘‘8” the interface is a periodic circle and thus this effect
does not appear. It may be possible to remedy this problem with an improved approximation for points near where the inter-
face meets another boundary.

7. Numerical results

In this section we present some computational results. Although we are primarily concerned with demonstrating the
accuracy of the multi-domain algorithms, we will also show results of applying the approach to a few interesting conjugate
heat transfer problems. In all cases we solve the incompressible Navier–Stokes equations (2) in the fluid domains and the
heat equation (4) in the solid domains. These equation are solved together with appropriate initial conditions, boundary con-
ditions as defined in Section 3.1, and interface conditions (5) and (6). We will present results using explicit time-stepping
and the coupled interface (CI) method as well as results for implicit time-stepping and the segregated interface (SI) method.
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For explicit time-stepping we use a predictor–corrector method that consists of a second-order Adams–Bashforth predictor
step followed by a second-order Adams–Moulton corrector step (trapezoidal rule). For implicit time-stepping we use a semi-
implicit version of the explicit predictor–corrector method. The corrector-step takes the form of the h-scheme (59). In the
semi-implicit approach we can optionally treat different terms in the equations in a implicit manner. For the INS equations,
for example, we may only treat the viscous terms implicitly or alternatively treat both viscous and advection terms in an
implicit manner.

We now list the different test cases and describe their purpose:

(i) The solid disk in a fluid example of Section 7.2 is a relatively simple two-dimensional fluid–solid problem that is ver-
ified with the method of analytic solutions as defined in Section 7.1. This geometry is also used in Section 6.3 for ver-
ifying convergence rates of the (SI) method.

(ii) The flat-plate heat exchanger with buoyancy test case of Section 7.3 defines an exact solution in a simple geometry and
shows that our approximations give the exact answer for solutions that are cubic polynomials in space, when solved
on Cartesian grids.

(iii) The flat-plate heat exchanger with the method of analytic solutions example of Section 7.4 is used to verify that the
numerical solution is exact, up to round-off errors, when the true solution is a second-degree polynomial in space
and time. This case shows that the explicit (CI) and implicit (SI) time-stepping algorithms are second-order accurate
in time.

(iv) The conjugate heat transfer in cocentric cylinders problem of Section 7.5 defines a three-dimensional exact solution in a
curvilinear geometry and thus tests the implementation for curvilinear three-dimensional grids.

(v) The fluid in a curved pipe test case of Section 7.6 provides a more general three-dimensional curvilinear grid example
that is verified with the method of analytic solutions. This geometry is also used to perform the simulations that pro-
vide the parallel scaling data of Section 7.7.

(vi) The conjugate heat transfer in an hohlraum problem of Section 7.8 provides a relatively complex and realistic example
involving multiple fluid domains and multiple solid domains. This case demonstrates that we can solve problems in
complex geometries and that we can handle many domains, including multiple fluid domains.

(vii) The conjugate heat transfer in an hexagonal fuel-assembly example of Section 7.9 shows that we can solve problems in
complex three-dimensional domains and provides further parallel scaling results.

7.1. The method of analytic solutions

The method of analytic solutions is an extremely useful technique for constructing exact solutions to check the accuracy of
a numerical implementation. This method, also sometimes known as the method of manufactured solutions [51], or twilight-
zone forcing [2] adds forcing functions to the governing equations and boundary conditions. These forcing functions are
determined so that some given functions, �uðx; tÞ, will be the exact solution to the forced equations. With this approach,
the error in the discrete solution can be easily determined. As an example of the technique, consider solving the IBVP for
the advection–diffusion equation,
ut þ a � ru� mDu ¼ f ; for x 2 X;

uðx;0Þ ¼ u0ðxÞ; for x 2 X; at t ¼ 0;
uðx; tÞ ¼ gðx; tÞ; for x 2 @X:
Any given smooth function, �uðx; tÞ, will be an exact solution of the IBVP if we set the forcing function, initial conditions and
boundary conditions as
f ðx; tÞ ¼ �ut þ a � r�u� mD�u; u0ðxÞ ¼ �uðx; 0Þ and gðx; tÞ ¼ �uðx; tÞ:
In our numerical implementation, we have a number of choices available for �u, including polynomials, trigonometric func-
tions and exponential functions, among others. The exact form of the analytic solution we use in each case will be given in
subsequent sections.

7.2. Solid disk in a fluid

We consider a conjugate heat transfer problem for a heated solid disk in a fluid. We solve the problem in a two-dimen-
sional domain X ¼ XS [XF , where the solid domain XS consists of a circular disk of radius R ¼ 0:4 and the fluid domain XF is
a square that surrounds the fluid, XF ¼ ½�1;1�2 �XS. The grid for an annular region is defined by
Að½ra; rb�;N1;N2Þ ¼ fðri2 cosðhi1 Þ; ri2 sinðhi1 ÞÞ jhi1 ¼ 2pi1=N1; ri2 ¼ ra þ ðrb � raÞi2=N2; ik ¼ 0;1; . . . ;Nk; k ¼ 1;2g:
The grid for a rectangle is
Rð½xa; xb� � ½ya; yb�;N1;N2Þ ¼ fðxa þ ðxb � xaÞi1=N1; ya þ ðyb � yaÞi2=N2Þ j ik ¼ 0;1; . . . ;Nk; k ¼ 1;2g:
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The number of grid points in each coordinate direction for a grid with resolution factor j is chosen so that the grid spacing is
approximately
Fig. 8.
Navier–
method
DsðjÞ ¼ 1
20j

:

The composite grid for the solid domain consists of an inner square grid and an outer annulus,
GðjÞS ¼ Rð½�Ri � DsðjÞ;Ri þ DsðjÞ�2;Nx;S;Nx;SÞ [ Að½Ri;R�;Nh;NrÞ;
where R ¼ 0:4; Ri ¼ R� 0:175; Nx;S ¼ b2ðRi þ DsðjÞÞ=DsðjÞ þ 1:5c; Nh ¼ b2pR=DsðjÞ þ 1:5c and Nr ¼ bðR� RiÞ=DsðjÞ þ 2:5c. Here
bxc denotes the largest integer less than or equal to x. The composite grid for the fluid domain is composed from a back-
ground square and an annular grid,
GðjÞF ¼ Rð½�1;1�2;Nx;F ;Nx;FÞ [ Að½R;Rþ 0:175�;Nh;NrÞ;
where Nx;F ¼ b2=DsðjÞ þ 1:5c. The composite grid for the entire multi-domain problem is the union of the fluid and solid grids,
GðjÞ ¼ GðjÞF [ G
ðjÞ
S :
Fig. 8 shows the grid Gð1Þ for this two-domain problem.
We solve the incompressible Navier–Stokes (INS) equations in the fluid domain and the heat equation in the solid do-

main. We use the method of analytic solutions as described in Section 7.1 with a trigonometric exact solution. The exact
solution for the fluid is
�u ¼ 1
2

cosðfxpxÞ cosðfypyÞ cosðftptÞ; ð97Þ

�v ¼ 1
2

sinðfxpxÞ sinðfypyÞ cosðftptÞ; ð98Þ

�p ¼ cosðfxpxÞ sinðfypyÞ cosðftptÞ; ð99Þ
T ¼ cosðfxpxÞ cosðfypyÞ cosðftptÞ; ð100Þ
which satisfies r � ð�u; �vÞ ¼ 0 if fx ¼ fy. For the fluid we choose fx ¼ fy ¼ ft ¼ 1. For the solid the exact solution for T is also gi-
ven by (100) and we choose fx ¼ fy ¼ ft ¼ 2. Since the exact solutions for T in the fluid and solid do not match at the interface,
the interface jump conditions (5) and (6) are replaced by ½T�I ¼ ½T�I and ½K@nT�I ¼ ½K@nT�I . We use parameters values
m ¼ 0:025; Df ¼ 0:03 and Kf ¼ 0:04 for the fluid, and Ds ¼ 0:04, Ks ¼ 0:9 for the solid, with the coefficient of thermal expan-
sivity a ¼ 0:1 and the gravity vector equal to g ¼ ð0;�10Þ. Fig. 8 shows the computed solution for the temperature at time
t ¼ 1. We define the maximum error in a computed solution Un

i on grid GðjÞ as
eðjÞu ¼max
i2GðjÞ
jUn

i � �uðxi; tnÞj; ð101Þ
where the maximum is taken over all valid points on the composite grid GðjÞ. The convergence rate r for a component u of the
solution is estimated by assuming that the maximum norm of the error has the form eðjÞu ¼ CðDsðjÞÞr and then making a least-
squares fit for r to the equation logðeðjÞu Þ ¼ r logðDsðjÞÞ þ logðCÞ for different values of DsðjÞ.
Left : composite grid Gð1Þ for the two-domain conjugate heat transfer problem. The heat equation is solved in the inner disk and the incompressible
Stokes equations are solved in the outer region. Right : the computed temperature for a problem where the exact solution was constructed using the
of analytic solutions.





Fig. 11. Flat-plate heat exchanger geometry and grids for the two-dimensional and three-dimensional computations. A rectangular fluid domain sits above
a rectangular solid domain.

Fig. 12.
solution
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xa ¼ 0; xb ¼ 1; ya ¼ 0; yi ¼
1
2
; yb ¼ 1; m ¼ 0:05; a ¼ 1; gx ¼ �1;

Ks ¼ 1; Ds ¼ 1; Kf ¼ 0:2; Df ¼ 0:2:
ð102Þ
The solution is integrated with implicit time-stepping with the segregated interface approach until t ¼ 10 when the steady
state has been approximately reached. The numerical solution remains independent of x to round-off error. The computed
solution is compared to the exact solution in Fig. 12 along the line x ¼ 1

2 for a grid with grid spacing Dx ¼ Dy ¼ 1=40. Since the
exact solution of the temperature is a linear profile, and the exact solution to the velocity is a cubic, the computed solution on
a Cartesian grid is equal to the exact solution to within round-off error or the degree to which the solution has converged to a
steady state. Note that the reason the cubic profile can be computed exactly is due to the fact that the leading-order trun-
cation-error term in approximating uxx with a second-order accurate finite difference approximation on a Cartesian grid is
ðDx2=12Þ@4

x u.
Fig. 13 shows the corresponding results for the three-dimensional problem for a grid with grid spacing

Dx ¼ Dy ¼ Dz ¼ 1=20. The numerical solutions again match the exact solution to round-off errors as in the two-dimensional
case.

7.4. A flat-plate heat exchanger with the method of analytic solutions

In this section we consider the same flat-plate geometry as in the previous section. We solve the conjugate heat transfer
problem on this domain using the method of analytic solutions. We choose the exact solution to be a degree two polynomial
in space times a degree two polynomial in time. We show that we can compute the exact solution to this problem using
explicit time-stepping and the CI method or using implicit time-stepping and the SI method. For implicit time-stepping
we use the second-order accurate Crank–Nicolson (trapezoidal) rule in each domain. This problem is an excellent test of
the implementation since it can identify subtle mistakes that would otherwise be difficult to find. This test also verifies that
0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5
Flat Plates Heat Exchanger 2D

y

T

Ts
Ts (exact)
Tf
Tf (exact)

0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2
Flat Plates Heat Exchanger 2D

y

u

u
u (exact)

Results for the 2D flat-plate heat exchanger. The temperature is a piecewise linear profile and the fluid velocity is a cubic polynomial. The numerical
computed on a Cartesian grid gives the exact solution up to round-off.
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Fig. 13. Results for the 3D flat-plate heat exchanger. The temperature is a piecewise linear profile and the fluid velocity is a cubic polynomial. The numerical
solution computed on a Cartesian grid gives the exact solution up to round-off.
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the time-stepping algorithms are second-order accurate in time. We remark that the spatial errors in the scheme usually
dominate the overall error. By choosing a problem where the spatial errors are negligible we can carefully test the time
accuracy.

The exact solution for the fluid is given by
Fig. 14.
The exa
�u ¼ ðx2 þ 2xyþ y2Þð1þ t=2þ t=3Þ; ð103Þ
�v ¼ ðx2 � 2xy� y2Þð1þ t=2þ t=3Þ; ð104Þ
�p ¼ ðx2 þ y2 � 1þ xy=2Þð1þ t=2þ t=3Þ; ð105Þ

T ¼ 1
2
þ x=2þ y=4þ x2=3þ y2=6

� �
ð1þ t=2þ t=3Þ; ð106Þ
where r � ð�u; �vÞ ¼ 0. The exact solution for the solid is
T ¼ ð2þ xþ y=2þ x2=2þ y2=4Þð1þ t=2þ t=3Þ:
The fluid and solid parameters were chosen as in Eq. (102). The boundary conditions for the fluid were chosen as no-slip
walls on all boundaries. The boundary conditions for the solid where chosen as Dirichlet. For the implicit time-stepping case
using the CI method the final errors do depend on the tolerance that we set for solving the interface equations. We used a
tolerance of 10�13. In Fig. 14 we indicate the maximum errors in the solution at time t ¼ 1:0 for explicit and implicit time-
stepping. The results show that the solution is exact up to round-off errors. Although not shown, similar results are obtained
in three-dimensions with the solution being exact up to round-off errors.

7.5. Conjugate heat transfer in cocentric cylinders

In this example we consider the buoyancy driven conjugate heat transfer between two cocentric cylinders as shown in
Fig. 15. A solid occupies the inner hollow cylindrical domain XS ¼ fx jr 2 ½ra; ri�; y 2 ½ya; yb�gwhere r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

and the axial
direction is parallel to the y-axis. A fluid occupies the outer hollow cylindrical domain XF ¼ fx jr 2 ½ri; rb�; y 2 ½ya; yb�g. The
boundary conditions and initial conditions for the problem under consideration are
Maximum errors at t ¼ 1 for the flat-plate heat exchanger solved using the method of analytic solutions with explicit and implicit time-stepping.
ct solution is a polynomial of degree 2 in space times a polynomial of degree 2 in time. The numerical solution is exact up to round-off errors.



Fig. 15. Cocentric cylinders heat exchanger geometry and grids. The coarse grid Gð1Þ is shown.
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Tðx; tÞ ¼ Ta; for r ¼ ra; ya 6 y 6 yb;

uðx; tÞ ¼ 0; for r ¼ ri; ya 6 y 6 yb;

Tðx; tÞ ¼ Tb; uðx; tÞ ¼ 0; for r ¼ rb; ya 6 y 6 yb;

uðx; 0Þ ¼ 0; Tðx;0Þ ¼ 1
2
ðTa þ TbÞ; for x 2 XF ;

Tðx;0Þ ¼ 1
2
ðTa þ TbÞ; for x 2 XS:
Gravity is in the y-direction, g ¼ ð0; gy;0Þ and the solution is assumed to be periodic in the axial direction y. The steady state
solution is a function of r only and is given by
T1ðrÞ ¼
Ta þ

Ti � Ta

lnðri=raÞ
lnðr=raÞ; for ra 6 r 6 ri;

Ti þ
Tb � Ti

lnðrb=riÞ
lnðr=riÞ; for ri 6 r 6 rb;

8>><>>:
v1ðrÞ ¼

agy

4m
ððc1 � c2Þr2 þ ðc2r2 þ c3Þ lnðrÞ þ c4Þ; for ri 6 r 6 rb;
where
Ti ¼
Kf lnðri=raÞTb þKs lnðrb=riÞTa

Kf lnðri=raÞ þ Ks lnðrb=riÞ
;

c2 ¼
Tb � Ti

lnðrb=riÞ
; c1 ¼ Ti � c2 lnðriÞ;

c3 ¼
ðc1 � c2Þðr2

i � r2
bÞ þ c2ðr2

i lnðriÞ � r2
b lnðrbÞÞ

lnðrb=riÞ
;

c4 ¼
ðc1 � c2Þðr2

b lnðriÞ � r2
i lnðrbÞÞ þ c2 lnðriÞ lnðrbÞðr2

b � r2
i Þ

lnðrb=riÞ
:

We solve the problem with parameters
ra ¼
1
2
; ri ¼ 1; rb ¼

3
2
; ya ¼ 0; yb ¼ 1; Ta ¼ 5; Tb ¼ 1;

m ¼ 0:05; a ¼ 1; gy ¼ �1; Ks ¼ 1; Ds ¼ 1; Kf ¼ 0:2; Df ¼ 0:2:
A grid for a cylindrical region with axial direction parallel to the y-axis is defined by
Cð½ra; rb�; ½ya; yb�;N1;N2;N3Þ ¼ fðri2 cosðhi1 Þ; ya þ ðyb � yaÞi3=N3; ri2 sinðhi1 ÞÞ jhi1 ¼ 2pi1=N1; ri2 ¼ ra þ ðrb � raÞi2=N2;

ik ¼ 0;1; . . . ;Nk; k ¼ 1;3g:
The number of grid points is chosen so that the grid spacing is approximately
DsðjÞ ¼ 1
10j

:
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The composite grid for two-domain problem consists of two cylindrical grids,
Fig. 16.
and flu
GðjÞ ¼ Cð½ra; ri�; ½ya; yb�;Nh;Nr ;NyÞ [ Cð½ri; rb�; ½ya; yb�;Nh;Nr;NyÞ;
where Nh ¼ b2pri=DsðjÞ þ 1:5c, Nr ¼ bðri � raÞ=DsðjÞ þ 2:5c and Ny ¼ bðyb � yaÞ=DsðjÞ þ 1:5c. We solve the problem on a se-
quence of grids GðjÞ; j ¼ 1;2;4. The solution is integrated with implicit time-stepping with the segregated interface approach
until t ¼ 10 when the steady state has been approximately reached.

The computed solution is compared to the exact solution in Fig. 16 along the radial line y ¼ 1
2, z ¼ 0, for the grid Gð2Þ. The

numerical solution shows excellent agreement with the exact solution. Fig. 17 shows the maximum errors in T and v and the
estimated convergence rate. The results demonstrate that the method is second-order accurate.

7.6. Fluid in a curved pipe

We consider the solution to a conjugate heat transfer problem in a curved pipe consisting of an inner fluid region sur-
rounded by a solid pipe as shown in Fig. 18. We solve this problem on a sequence of grids with the method of analytic solu-
tions and determine the errors and convergence rates when using explicit and implicit time-stepping. These results show the
accuracy of the three-dimensional capabilities of our approach. We also solve a more realistic conjugate heat transfer
problem.

For completeness, we first define the problem domain and the grids. The fluid domain for the curved pipe is a 90� sector of
a toroid. The solid domain is a toroidal shell that forms the solid pipe. The grid for a sector of a toroidal shell is defined as a
body of revolution of an annulus cross-section and is given by
T ðxc; ½ra; rb�; ½/a;/b�;R;N1;N2;N3Þ ¼ fxc þ ððRþ ri2 cosðhi1 ÞÞ cosð/i3 Þ; ri2 sinðhi1 Þ; ðRþ ri2 cosðhi1 ÞÞ sinð/i3 ÞÞ
jhi1 ¼ 2pi1=N1; ri2 ¼ ra þ ðrb � raÞi2=N2; /i3 ¼ /a þ ð/b � /aÞi3=N3; ik ¼ 0;1; . . . ;Nk; k ¼ 1;3g;
where xc is the center of the toroid, ra and rb are the inner and outer values for the minor radius, R is the major radius and /a

and /b are the bounds on the toroidal angle /. The grid for the core of the fluid domain is a body of revolution of a square
cross-section and given by
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Results for the cocentric cylinder heat exchanger for grid Gð2Þ . Left: the computed solution, exact solution and errors for the temperature in the solid
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Fig. 17. Maximum errors and estimated convergence rate for the numerical solution of the steady state cocentric cylinders heat exchanger.

Fig. 18. Conjugate heat transfer of a fluid in a curved solid pipe with an exact solution constructed with the method of analytic solutions. Left : the
composite grid Gð1Þ for the two-domain problem. The inner fluid region is discretized with the green and blue grids; the outer solid region with the red grid.
Right: the computed solution for the temperature in the fluid and solid domains. Contours of the solution are plotted on planes that cut through the domain.
The fluid and solid domains use different trigonometric functions as exact solutions. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Sðxc; ½xa;xb� � ½ya;yb�; ½/a;/b�;R;N1;N2;N3Þ ¼ fxc þ ððRþ xi1 Þcosð/i3 Þ;ya þ ðyb � yaÞi2=N2; ðRþ xi1 Þ sinð/i3 ÞÞj
xi1 ¼ xa þ ðxb � xaÞi1=N1; /i3 ¼ /a þ ð/b �/aÞi3=N3; ik ¼ 0;1; . . . ;Nk; k¼ 1;2g:
The composite grid for the fluid domain consists of a toroidal shell and inner core,
GðjÞF ¼ T ðR;0; 0Þ; ½0:35;0:5�; ½p;p=2�;2:5;NðjÞh ;N
ðjÞ
fr ;N

ðjÞ
/

	 

[ S ðR;0; 0Þ; ½�0:35; 0:35� � ½�0:35; 0:35�; ½p;p=2�;2:5;NðjÞx ;N

ðjÞ
y ;N

ðjÞ
/

	 

;

while that for the solid domain consists of the outer toroidal shell,
GðjÞS ¼ T ðR;0; 0Þ; ½0:5; 0:7�; ½p;p=2�;2:5;NðjÞh ;N
ðjÞ
sr ;N

ðjÞ
/

	 

:

Here j denotes the resolution of the grids. The number of grid points, NðjÞh ; NðjÞfr ; NðjÞ/ , etc. are chosen so that the grid spacing is
approximately equal to
DsðjÞ ¼ 1
20j

:

The composite grid for the entire multi-domain problem is the union of the fluid and solid grids,
GðjÞ ¼ GðjÞF [ G
ðjÞ
S :
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We solve the incompressible Navier–Stokes equations with Boussinesq approximation in the fluid domain and the heat
equation in the solid domain. We use the method of analytic solutions with a trigonometric exact solution. The exact solu-
tion for the fluid is
Fig. 19.
coupled

Fig. 20.
segrega
�u ¼ cosðfpxÞ cosðfpyÞ cosðfpzÞ cosðftptÞ; ð107Þ

�v ¼ 1
2

sinðfpxÞ sinðfpyÞ cosðfpzÞ cosðftptÞ; ð108Þ

�w ¼ 1
2

sinðfpxÞ cosðfpyÞ sinðfpzÞ cosðftptÞ; ð109Þ

�p ¼ cosðfpxÞ cosðfpyÞ cosðfpzÞ cosðftptÞ; ð110Þ
T ¼ cosðfpxÞ cosðfpyÞ cosðfpzÞ cosðftptÞ; ð111Þ
which satisfies r � ð�u; �v ; �wÞ ¼ 0. For the fluid we choose f ¼ ft ¼ 1:5. For the solid the exact solution for T is also given by
(111) and we choose f ¼ ft ¼ 1. Since the exact solutions for T in the fluid and solid do not match at the interface, the inter-
face jump conditions become ½T�I ¼ ½T�I and ½K@nT�I ¼ ½K@nT�I . We use parameters values m ¼ 0:0125, Df ¼ m=0:72 and
Kf ¼ 0:1 for the fluid and Ds ¼ 0:025; Ks ¼ 0:05 for the solid.

Fig. 18 shows the computed solution for the temperature at time t ¼ 1. Note that the trigonometric functions were chosen
so that the solution for T in the solid is different from T in the fluid. Figs. 19 and 20 present the maximum errors at time t ¼ 1
and the estimated convergence rates when using explicit and implicit time-stepping. The results indicate that the solution is
converging at rates close to second-order accuracy. The actual errors between the explicit and implicit time-stepping results
are similar.

For the implicit time-stepping case, the interface equations were solved to a tolerance of 10�3 in the maximum residuals
of the interface jump conditions. This tolerance was always achieved within two iterations. The interface equations will al-
ways be solved for at least two iterations with the implicit predictor–corrector time-stepping method since they are solved
after the predictor step and after the first corrector-step. Thus, in this example no additional corrector steps were needed to
satisfy the interface equations.

To give an idea of what the solution looks like for a more realistic situation we solve a conjugate heat transfer problem
through the curved pipe including the effects of buoyancy. We compare the two cases when gravity points in the þz and �z
directions. For the fluid, an inflow condition of ðu;v ;wÞ ¼ ð0;0;�1ÞPðxÞ and T ¼ 0 is specified at the boundary face at z ¼ 0.
Here the parabolic inflow function PðxÞ is given by
PðxÞ ¼
1 for distðxÞ > d;

1� ðdistðxÞ=dÞ2 for distðxÞ 6 d;

(

where dist(x) is the distance of a point x on the inflow face to the adjacent solid wall, and d is chosen to be 0.2. An outflow
condition is specified at the face at x ¼ 2:5 using pn þ p ¼ 0, while no-slip walls are used on the curved boundaries of the
pipes. (Section 3.1 provides more information on the equations used for the different boundary conditions.) The solid pipe
Maximum errors at t ¼ 1 and estimated convergence rate, r, when solving the fluid in a curved pipe problem using explicit time-stepping and the
interface (CI) approach. See also Fig. 21.

Maximum errors at t ¼ 1 and estimated convergence rate, r, when solving the fluid in a curved pipe problem using implicit time-stepping and the
ted interface (SI) approach. See also Fig. 21.
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Fig. 21. Maximum errors at t ¼ 1 when solving the fluid in a curved pipe problem using explicit time-stepping and the coupled interface (CI) approach (left)
and using implicit time-stepping and the segregated interface (SI) approach (right). See also Figs. 19 and 20.
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is given a fixed temperature T ¼ 10 on the outer boundary of the pipe and Neumann conditions on the inflow and outflow
faces. Other parameters are taken as m ¼ 0:025; Df ¼ 0:025=0:72; Kf ¼ 0:1; Ds ¼ 0:05; Ks ¼ 1. Gravity is chosen as
g ¼ ð0;0;�1Þ for two different cases. The initial conditions for the fluid were based on the state ðu;v ;wÞ ¼ ð0; 0;�1Þ and
T ¼ 0. These values for the velocity were projected and smoothed to provide smooth and approximately divergence free ini-
tial conditions. The initial condition for the solid was taken as T ¼ 10.

Fig. 22 shows the solution at time t ¼ 1 for the two cases of gravity pointing in the þz and �z directions. These solutions
were computed on the grid Gð2Þ. The temperature in the fluid and solid are shown along with the speed of the flow,
juj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2
p

. The fluid is heated as it moves through the pipe. There are significant differences in the flow between
the two cases. In the case when gravity points in the �z direction, the buoyancy force will be in the þz direction for hot fluid.
Near the inflow region this will slow down the fluid near the walls. When gravity is in the þz direction, the buoyancy force
will act in the opposite direction on hot fluid. In this case the hot fluid near the wall in the inflow section is accelerated.
Fig. 22. Flow of a heated incompressible fluid through a curved solid pipe. Left : the temperature in the fluid and solid. Right: the flow speed (magnitude of
the velocity) and the temperature in the solid. Top: gravity is g ¼ ð0;0;þ1Þ. Bottom: gravity is g ¼ ð0;0;�1Þ.
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7.7. Parallel performance

The multi-domain solver runs in parallel on distributed memory computers. In this section we provide some parallel per-
formance numbers when solving the flow in a curved pipe example given in the later part of Section 7.6. Our approach to
distributed memory parallelism and load balancing is described in [14]. In brief, each grid can be independently partitioned
across the processors, while a modified bin-packing algorithm is used for load balancing. We solve the flow in a curved pipe
problem on the composite grid Gð2Þ for which the total number of grid points was approximately 4.6 � 105. We solve to time
t ¼ 0:4 (513 time steps) with explicit time-stepping. The pressure equation is solved with a stabilized bi-conjugate gradient
algorithm from PETSc [52] using an ILU (incomplete LU) preconditioner with fill level 1 and a relative tolerance of 10�5. On
average, approximately nine iterations were required per pressure solve. The solution to the pressure equation was taking
over 50% of the total time.

For each run, we integrate the equations from t ¼ 0 to 0.4 and record the number of time steps taken and the total CPU
time used (wall clock time). From this information we compute T k, the average CPU time per step for run k. Let NðkÞproc denote
the number of processors used in run k. To measure the parallel scaling behaviour, we define a parallel scaling factor
Fig. 23.
steps. S
Sk ¼
T 0

T k

Nð0Þproc

NðkÞproc

;

which compares the CPU times per step between runs 0 and k. The run for k ¼ 0 is taken to be a reference computation with
one processor. Ideally, Sk should equal 1 for perfect scaling. All calculations in this section were performed on a AMD Opter-
on Linux cluster with eight 2.4 GHz processors per node and 16 gigabytes of memory per node. Fig. 23 presents the strong
parallel scaling results. Shown are the parallel scaling factor and the time-per-step in CPU seconds for the total computation,
the initialization phase of the computation and the advance stage of the computation. The initialization phase includes the
time to setup the pressure equation and project the initial conditions to be approximately divergence free. The time to solve
Strong parallel scaling for flow of a fluid in a curved pipe. The solution was solved on grid Gð2Þ with approximately 4.6 � 105 grid points for 513
k is the parallel scaling factor. See also Fig. 24.
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Fig. 24. Parallel speedup, Sk , for the curved pipe. See also Fig. 23.



the coupled interface equations was small, typically 3–5% of the total time. There is a decrease in the parallel scaling factor of
S0 ¼ 1:0 to S1 ¼ 0:8 in going from 1 to 2 processors but after that the code scales fairly well out to 64 processors. These re-
sults are quite good considering the relatively few number of grids points for this problem. Fig. 24 provides a graph of Sk

versus the number of processors.

7.8. Conjugate heat transfer in an hohlraum

In this section we illustrate the use of our multi-domain simulation capability in solving an interesting conjugate heat
transfer problem. Inertial confinement fusion (ICF) targets used by the National Ignition Facility (NIF) contain a spherical
shell of deuterium–tritium (DT) ice. This shell is enclosed by a capsule, typically made of a polymer or metal, and suspended
within a thin walled gold cylinder known as a hohlraum. Fig. 25(a) depicts a typical target and hohlraum configuration. Since
spherical symmetry of the ice layer directly affects the performance of the target, the temperature on the ice shell must be
kept as uniform as possible. Decay heat released from the DT vapor and ice leads to gravity driven thermal convection both in
the DT vapor and the transfer gas between the hohlraum and capsule. This convection leads to asymmetries in the temper-
ature of the ice layer and ultimately to asymmetric sublimation of the ice. One method for actively controlling the temper-
ature in the target includes adding heating and cooling elements at the periphery of the hohlraum. This system can be
simulated both with and without the thermal control mechanisms to examine the effectiveness of such approaches.

The five domains used for this problem include three solid domains for the DT ice, capsule and the hohlraum and two
fluid domains for the DT vapor and transfer gas. Following Sanchez and Geidt, the capsule is assumed to be a polyimide shell
with an outer radius of 1 mm and a thickness of 0.16 mm; the ice shell is 0.08 mm thick. The overall length and radius of the
hohlraum are 9.5 mm and 2.75 mm, respectively, with a 0.1 mm thick wall [53]. Material properties for each domain are gi-
ven in Fig. 26 [53–55]. The transfer gas properties are based on a 50–50 mixture of H2 and He at 19.5 K. The acceleration due
to gravity is a constant 9:8� 103 mm=s2. Cryogenic cooling regions at either end of the hohlraum are held at a constant tem-
perature of 19.5 K while the ring heaters provide a heat flux of 1:3 mW=mm2. Fig. 25(b) illustrates the grids used to mesh this
domain; for the purposes of the figure, a coarsened version of the grid is shown.

The results from a sample axisymmetric computation are given in Fig. 27 which shows the temperature in the different
domains as well as the streamlines of the flow in the two gas domains. The large buoyancy driven recirculation flow in the
Fig. 25. A typical NIF hohlraum target consists of DT vapor and ice; a polyimide capsule; the heat transfer gas; and the gold hohlraum. The composite grid
consists of two fluid and three solid domains using a total of 20 grids.



Fig. 26. Material properties used for the hohlraum convection problem: q is the density, C the specific heat, K the thermal conductivity, q the decay heat
source, and l the dynamic viscosity.
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transfer gas region is clearly evident as well as the asymmetric temperature distribution. There is also a recirculation flow in
the inner DT vapor region although the magnitude of the velocity is much smaller in this region. These results are in qual-
itative agreement with those previously reported [53]. We leave to future work a more detailed analysis of this problem and
comparison to experiments.

7.9. Conjugate heat transfer in an hexagonal fuel-assembly

As a final example we consider the flow of a fluid coolant past a collection of hot fuel pins arranged in an hexagonal
assembly. Such a geometry is similar to those found in some sodium-cooled fast nuclear reactors [56]. The computational
domains and grids are shown in Fig. 28. There are three different domains. The seven cylindrical fuel pins define one solid
domain. The hexagonal solid duct defines a second solid domain. The fluid channel occupies the domain between the fuel
pins and the outer duct.
Fig. 27. Hohlraum results. Left: the temperature in each of the domains shown on the same scale. Middle: the temperature is shown with different scales in
each domain to better show the variation. For the middle plot the DT vapor has bounds on T of [0.085,0.086], the DT ice [0.084,0.086], the capsule
[0.081,0.086], the transfer gas [0,0.083] and hohlraum [0,0.005]. Right: the stream lines in the central DT gas region and transfer gas region. The flow speed
in DT vapor has bounds of ½0;1:7� 10�4� while the bounds in the transfer gas are [0,0.81].



Fig. 28. The fuel-assembly geometry and composite grid. A coarsened version of the grid is shown. Grids for the fluid domain are shown in blue, those for
the fuel pins in green, while the grid for the duct is shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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The composite grid for this domain was defined in terms of cylindrical grids, Cartesian box grids and an extruded smooth-
polygon grid for the duct. The smooth-polygon is defined in terms of logarithms of hyperbolic cosine functions [57]. The fuel
pins of radius 0.5 and length 4.0 were separated by a minimum distance of 0.3 between each other and the duct. The com-
posite grid for this domain with resolution factor j, denoted by GðjÞ, was chosen to have a background grid spacing of
DsðjÞ ¼ 1=ð20jÞ. The cylindrical grids in the fluid domain were clustered near the walls to better resolve the fluid boundary
layer.

A cold fluid of temperature T ¼ 0 enters the domain on the lower inflow boundary at z ¼ 0 and travels upward. An out-
flow condition is imposed at the top boundary at z ¼ 4. The boundary condition at the fluid–solid interface is a no-slip wall.
The boundaries of the pins and duct that are not on the interface with the fluid channel are taken as adiabatic walls
(Neumann boundary conditions). The fuel pins are at an initial temperature of T ¼ 0 and given a constant volume heat source
f ¼ 1 in Eq. (4). The duct is at an initial temperature of T ¼ 0. The fluid parameters are taken as
m ¼ 0:025; D ¼ 0:0694; K ¼ 0:05 and a ¼ 0:1 The solid fuel pin parameters are D ¼ 0:1, and K ¼ 0:5. The solid duct param-
eters are D ¼ 0:1, and K ¼ 1:0. The gravity vector is g ¼ ð0;0;�1Þ.
Fig. 29. Conjugate heat transfer in the fuel-assembly. Left: the temperature in the fluid and solid domains plotted on three planes passing through the
domain. Right: the flow speed in the fluid domain.
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The solution was advanced in time with implicit time-stepping and the (SI) interface method. A semi-implicit treatment
of the INS equations was used where only the viscous terms were treated implicitly; this required one scalar implicit system
that was used for all components of the velocity and a second scalar implicit system for the temperature. The implicit sys-
tems and the pressure equation were solved with PETSc [52] using a stabilized bi-conjugate gradient algorithm with an
ILU(1) preconditioner [52]. The solution was computed on grid Gð2Þ which had a total of about 13 million grid points. The
solution was computed in parallel using 8 nodes and 64 processors. The CPU time was about 26 s/step for 68 steps requiring
a total time of about 30 min. The maximum memory required per processor was about 720 Mb. Running the same problem
on 16 nodes and 128 processors took about 18 min for a speedup of about 1.7 going from 64 to 128 processors. Fig. 29 shows
the computed solution at t ¼ 1:0. Both the temperature and the flow speed, juj, are shown. From the figure it can be seen that
the fuel pins heat the fluid as it flows upward past the pins. The fluid moves faster through the larger sub-channels near the
duct. Fig. 30 shows a line plot of the flow speed, juj, and temperature along the line segment �2:5 6 x 6 0:25; y ¼ 0; z ¼ 4,
near the outlet. The temperature is seen to be continuous at the interfaces but as expected the normal derivative in the tem-
perature jumps at the interfaces.

8. Conclusions

We have described an approach for solving transient and steady-state conjugate heat transfer problems in complex
geometries using composite overlapping grids. Separate physics solvers for fluid flow and heat conduction are used in dif-
ferent domains. The solutions are coupled at interfaces by conditions that impose the continuity of temperature and heat
flux. A multi-domain solver coordinates the overall time-stepping method and the treatment of the interfaces. An analysis
of a centered approximation to the interface jump condition was given and the approximation was shown to be second-order
accurate and stable, independent of the relative sizes of the thermal conductivities and diffusivities. When used with explicit
time-stepping, this results in an efficient, strongly coupled algorithm (i.e. no iterations between sub-domains are required to
satisfy the interface conditions). We also analyzed iteration strategies for solving the interface conditions when the sub-do-
main solutions were advanced in a partitioned fashion with implicit time-stepping. Conditions for the convergence when
using the Dirichlet–Neumann interface approach were given. The use of a mixed (Robin) interface condition was shown
to have attractive convergence properties especially for the case when adjacent materials have similar properties.

The accuracy of the new multi-domain approach was verified on a number of test cases. The method was shown to give
excellent results for a flat-plate heat exchanger example and a cylindrical heat exchanger test case for which the exact solu-
tions could be determined. The method was shown to be second-order accurate in space and time using the method of ana-
lytic solutions when applied to a two-dimensional heated disk in a square, the flat-plate heat exchanger and the three-
dimensional flow in a solid curved pipe. The multi-domain approach was also applied to two interesting applications. The
gas flow and heat conduction in an axisymmetric model of a hohlraum were computed. This problem involved two distinct
fluid domains coupled to three solid domains. Finally the flow of a coolant fluid in a model of a nuclear reactor fuel-assembly
was computed.

There are a variety of future directions for this work. The interface treatment can be extended to higher-order accuracy
and to the case when the grids on either side of the interface do not match. A straight-forward extension will enable the
solution to conjugate heat transfer problems involving compressible fluid flows using, for example, our cgcns solver. The ap-
proach can also be extended to treat moving rigid bodies following the technique described in [5]. Another future direction
will be to couple fluid flow and deforming solids.
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Appendix A. Proof of theorems

Here we provide proofs to Theorems 1 and 2.

Theorem 1. The solution to the one-dimensional interface problem (35)–(41) is stable and second-order accurate.

Proof. Laplace transforming Eqs. (35)–(41) and replacing (38) with the equivalent condition U1;0ðtÞ ¼ U2;0ðtÞ gives
sbU1; j � u0
1ðx1; jÞ ¼ D1DþD� bU1; j; for j ¼ 0;�1;�2; . . . ; ðA:1Þ

sbU2; j � u0
2ðx2; jÞ ¼ D2DþD� bU2; j; for j ¼ 0;1;2; . . . ; ðA:2Þ

K1D0
bU1;0 ¼ K2D0

bU2;0; ðA:3ÞbU1;0 ¼ bU2;0: ðA:4Þ
kbU1kh <1; kbU2kh <1; ðA:5Þ
where bUm; jðsÞ is the Laplace transform of Um; jðtÞ with dual variable s. The Laplace transform of the error in the approxima-
tion is
êm; j ¼ bUm; j � ûmðxm; j; sÞ; ðA:6Þ
where ûmðx; sÞ is the Laplace transform of umðx; tÞ. The error satisfies the equations
sê1; j ¼ D1DþD�ê1; j þD1
h2

1

12
@4

x û1ðn1; j; sÞ; for j ¼ 0;�1;�2; . . . ; ðA:7Þ

sê2; j ¼ D2DþD�ê2; j þD2
h2

1

12
@4

x û2ðn2; j; sÞ; for j ¼ 0;1;2; . . . ; ðA:8Þ

K1D0ê1;0 ¼ K2D0ê2;0 �K1
h2

1

6
@3

x û1ðg1;0; sÞ � K2
h2

2

6
@3

x û2ðg2;0; sÞ; ðA:9Þ

ê1;0 ¼ ê2;0; ðA:10Þ
kê1kh <1; kê2kh <1; ðA:11Þ
for some nm; j 2 ½xm; j�1; xm; jþ1�, and gm; j 2 ½xm; j�1; xm; jþ1�. In the usual way we can subtract out functions that make the forcing
terms in the first two equations zero and that only changes the forcings in the boundary conditions by Oðh2

1 þ h2
2Þ. This results

in a new error equation with inhomogeneous boundary conditions for the error functions W1; j and W2; j,
sW1; j ¼ D1DþD�W1; j; for j ¼ 0;�1;�2; . . . ; ðA:12Þ
sW2; j ¼ D2DþD�W2; j; for j ¼ 0;1;2; . . . ; ðA:13Þ
K1D0W1;0 ¼ K2D0W2;0 þ C1h2

; ðA:14Þ
W1;0 ¼W2;0 þ C2h2

: ðA:15Þ
kW1kh <1; kW2kh <1; ðA:16Þ
where C1 and C2 are constants and h2 denotes a term of order Oðh2
1 þ h2

2Þ. The solution to the problem (A.12)–(A.16) is of the
form
W1; j ¼ Aj�j
1 ; W2; j ¼ Bjj

2;
where
jm ¼ 1þ sm=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm þ s2

m

q

is a root of the characteristic equation
j� 2þ j�1 ¼ sm
with sm ¼ sh2
m=Dm, for m ¼ 1;2. To satisfy (A.16), the branch of the square root is taken so that jjmj < 1 for ReðsÞ > 0. Apply-

ing the interface conditions (A.14) and (A.15) implies
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AK1
j�1

1 � j1

2h1
¼ BK2

j2 � j�1
2

2h2
þ C1h2

;

A ¼ Bþ C2h2
with solution
A ¼ D�1 C1h2 � C2h2K2
j2 � j�1

2

2h2

� �
; ðA:17Þ

B ¼ A� C2h2
; ðA:18Þ

D ¼ K1

h1
ðs1=2þ 1� j1Þ þ

K2

h2
ðs2=2þ 1� j2Þ: ðA:19Þ
To show the accuracy of the scheme we consider the limit sh2
m 
 1, which implies
jm � 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
s=Dm

p
hm þ

1
2

sh2
m=Dm þ Oðh3

mÞ; ðA:20Þ

jm � j�1
m

2hm
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
s=Dm

p
þ Oðh2

mÞ; ðA:21Þ

D � K1

ffiffiffiffiffiffiffiffiffiffiffi
s=D1

p
þK2

ffiffiffiffiffiffiffiffiffiffiffi
s=D2

p
þ Oðh2Þ; ðA:22Þ

A � K1

ffiffiffiffiffiffiffiffiffiffiffi
s=D1

p
þK2

ffiffiffiffiffiffiffiffiffiffiffi
s=D2

ph i�1
C1h2 þ C2h2K2

ffiffiffiffiffiffiffiffiffiffiffi
s=D2

p	 

: ðA:23Þ
The scheme is therefore second-order accurate since A ¼ Oðh2Þ and B ¼ Oðh2Þ for sh2
m 
 1. For stability we need to prove that

D is bounded away from zero for ReðsÞ > 0. Let jm ¼ am þ ibm be the complex representation for jm, where am and bm are
real. Whence from (A.19),
ReðDÞ ¼ K1

h1
ðReðs1Þ=2þ 1� a1Þ þ

K2

h2
ðReðs2Þ=2þ 1� a2Þ; ðA:24Þ

¼ 1
2
ðK1h1=D1 þK2h2=D2ÞReðsÞ þ K1

h1
ð1� a1Þ þ

K2

h2
ð1� a2Þ: ðA:25Þ
Note that jjmj < 1 implies jamj < 1 and 1� am > 0. Therefore,
ReðDÞ > 1
2
K1h1=D1 þK2h2=D2ð ÞReðsÞ > 0; for ReðsÞ > 0;
and the scheme is stable. This completes the proof of the theorem. h

Theorem 2. Solutions to Eqs. (44)–(50) are stable in the sense of Godunov–Ryabenkii provided the time-step Dt satisfies the von
Neumann stability conditions
dm �
DmDt

h2
m

<
1
2
; m ¼ 1;2: ðA:26Þ
Proof. Proceeding along the lines of the previous proof, the solution to the homogeneous equations will be of the form
Un
1; j ¼ znj�j

1 ; j ¼ 1;0;�1;�2; . . . ; ðA:27Þ

Un
2; j ¼ znjj

2; j ¼ �1; 0;1;2;3; . . . ; ðA:28Þ
where
jm ¼ 1þ sm=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm þ s2

m=4
q

; ðA:29Þ

¼ 1þ z� 1
2dm

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

dm
1þ z� 1

4dm

� �s
ðA:30Þ
with sm ¼ ðz� 1Þ=dm and where we choose the branch of the square root so that jjmj < 1 for jzj > 1. Substitution of the
expressions for jm into the interface condition (46) and using jm � j�1

m ¼ 2ðjm � 1Þ � sm, gives a nonlinear equation satisfied
by z,
ð�ÞK1

h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

d1
1þ z� 1

4d1

� �s
¼ �ð�ÞK2

h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

d2
1þ z� 1

4d2

� �s
: ðA:31Þ
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The sign taken for each square root will depend on z and dm and we note the possibilities with ð�Þ. We need to show that
there are no solutions to this equation with jzj > 1. We first show that all solutions to (A.31) are real. Taking the square of
(A.31) implies that
K2
1

h2
1

z� 1
d1

1þ z� 1
4d1

� �
¼ K

2
2

h2
2

z� 1
d2

1þ z� 1
4d2

� �
: ðA:32Þ
Thus z ¼ 1 or z satisfies
aðz� 1Þ ¼ b� 1; with a ¼ 1
4d1
� b

4d2
; and b ¼ K

2
2

h2
2

h2
1

K2
1

: ðA:33Þ
If a – 0 then z ¼ 1þ ðb� 1Þ=a is another real root. The special case a ¼ 0 and b ¼ 1 suggests that any value of z could be a
solution. However this is a spurious solution introduced when squaring expression (A.31) since in this case d1 ¼ d2; s1 ¼ s2

and j1 ¼ j2 (implying that both square roots take the same sign) and (A.31) becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z� 1

4d1

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z� 1

4d1

s
ðA:34Þ
with z ¼ 1� 4d1; z 2 R, as the only solution. Therefore, given that solutions for z are real and jzj > 1, there are two cases to
consider, z > 1 and z < �1. Define DðzÞ by
DðzÞ ¼ ð�ÞK1

h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

d1
1þ z� 1

4d1

� �s
þ ð�ÞK2

h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

d2
1þ z� 1

4d2

� �s
: ðA:35Þ
We need to show that there are no solutions to DðzÞ ¼ 0 when z > 1 or when z < �1. If z > 1 then from (A.30) we note that
the arguments of the square roots are positive and also that the negative sign for the square roots must be taken to make
jjmj < 1. This implies that DðzÞ is the sum of two negative quantities and thus there can be no real solutions for z > 1. When
z < �1, and dm < 1

2 then the arguments of the square roots are also positive but we must take the positive sign for both
square roots to make jjmj < 1. Thus in this case DðzÞ is the sum of two positive quantities and therefore there are no real
roots with z < �1. We have thus shown that there are no solutions with jzj > 1, proving the theorem. h
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